Comparative study of contrast-enhanced ultrasound in different molecular breast cancers
-
摘要:
目的探讨超声造影特征及时间-强度曲线定量参数在不同分子分型乳腺癌中的差异性。 方法回顾性分析142例乳腺癌患者(142个癌灶)的超声造影资料;根据雌激素受体、孕激素受体、人表皮生长因子受体-2(HER-2)、Ki-67的表达状态,将乳腺癌分为Luminal A、B型(管腔上皮型)、三阴型、HER-2过表达型4个分型,分析不同分子分型乳腺癌患者的超声造影特征及时间-强度曲线定量参数。 结果Luminal A型表现为低或等增强比例为80.8%(21/26),出现放射状汇聚比例为69.2%(18/26);Luminal B型出现低或等增强比例为60.3%(35/58),出现放射状汇聚比例为56.9%(33/58);HER-2过表达型出现高增强比例为90.0%(27/30),内部出现灌注缺损比例为73.3%(22/30),周边有穿入血流比例为70.0%(21/30),三阴型表现为高增强比例为92.9%(26/28),增强后边界清楚比例为92.8%(26/28)。不同分子分型乳腺癌在增强边界、增强强度、穿入血流、灌注缺损比较差异均有统计学意义(P<0.05),而在增强后范围扩大、造影剂分布、造影剂增强顺序、造影模式与分子分型表达差异无统计学意义(P>0.05);三阴型、HER-2过表达型峰值强度高于Luminal A型和Luminal B型,差异有统计学意义(P<0.05),而不同分子分型乳腺癌病灶达峰时间、平均渡越时间、曲线下面积、消除斜率比较差异均无统计学意义(P>0.05)。 结论不同分子分型乳腺癌超声造影特征存在差异,可为术前乳腺癌分子分型预测提供有价值的影像学信息。 Abstract:ObjectiveTo explore the differences between contrast-enhanced features and time-intensity curve quantitative parameters in different molecular types of breast cancer. MethodsWe retrospectivly analyzed 142 cases of breast cancer patients (142 tumors) by contrast-enhanced data. The estrogen receptor, progesterone receptor, human epidermal growth factor receptor-2 (HER-2), Ki-67 expression status were analyzed. The breast cancer were divided into four types: Luminal A, B (luminal epithelium), triple negative, and HER-2 overexpression. The contrast-enhanced features and time-intensity curve of breast cancer patients with different molecular classification were analyzed. ResultsLuminal type A showed a low or equal enhancement ratio of 80.8% (21/26), with a radial aggregation ratio of 69.2% (18/26). Luminal type B showed a low or equal enhancement ratio of 60.3% (35/58). The proportion of radial aggregation was 56.9% (33/58). The ratio of high enhancement of HER-2 overexpression was 90.0% (27/30), and the proportion of internal perfusion defect was 73.3% (22/30). The proportion of blood flow was 70.0% (21/30). The proportion of triple-yin showed high enhancement rate was 92.9% (26/28), and the clear ratio of enhanced boundary was 92.8% (26/28). The differences of the enhancement of borderline, enhancement intensity, perforation blood flow and perfusion defects between different molecular types of breast cancer were significant (P<0.05). But the differences of range of enhancement, contrast agent distribution, contrast agent enhancement sequence between angiographic pattern and molecular typing were not significant (P>0.05). ConclusionThere are differences in the features of contrast-enhanced ultrasound in different molecular types of breast cancer. It can provide valuable imaging information for preoperative prediction of breast cancer molecular classification. -
Key words:
- breast tumor /
- contrast enhanced ultrasound /
- time-intensity curve /
- molecular phenotypes
-
表 1 不同分子分型乳腺癌的超声造影特征
分子分型 增强后范围扩大 增强边界 增强强度 造影剂分布 有 无 不清楚 清楚 高增强 低或等增强 均匀 不均匀 周边增强 管腔上皮型 79 5 75 9 28 56 28 56 12 非管腔上皮型 55 3 28 30 53 5 11 47 29 χ2 0.39 28.965 47.176 3.555 P 0.843 0.000 0.000 0.059 Luminal A型 23 3 21 5 5 21 8 18 4 Luminal B型 56 2 54 4 23 35 20 38 8 χ2 2.099 2.011 3.370 0.111 P 0.147 0.156 0.066 0.739 Luminal A型 23 3 21 5 5 21 8 18 4 三阴型 26 2 2 26 26 2 6 22 9 χ2 0.310 29.888 29.888 0.612 P 0.578 0.000 0.000 0.434 Luminal A型 23 3 21 5 5 21 8 18 4 HER-2过表达型 29 1 26 4 27 3 5 25 20 χ2 1.41 0.359 28.485 1.554. P 0.23 0.549 0.000 0.213 Luminal B型 56 2 54 4 23 35 20 38 8 三阴型 26 2 2 26 26 2 6 22 9 χ2 0.581 61.429 21.804 1.526 P 0.446 0.000 0.000 0.217 Luminal B型 56 2 54 4 23 35 20 38 8 HER-2过表达型 29 1 26 4 27 3 5 25 20 χ2 0.001 0.991 20.426 3.086 P 0.978 0.319 0.000 0.079 三阴型 26 2 2 26 26 2 6 22 HER-2过表达型 29 1 26 4 27 3 5 25 20 χ2 0.429 36.679 0.150 0.214 P 0.513 0.000 0.698 0.644 分子分型 造影剂增强顺序 穿入血流 灌注缺损 向心性 离心性 整体性 有 无 有 无 管腔上皮型 34 14 36 24 60 28 56 非管腔上皮型 22 10 26 31 27 29 29 χ2 0.094 8.948 3.996 P 0.954 0.003 0.046 Luminal A型 13 3 10 6 20 9 17 Luminal B型 21 11 26 18 40 19 39 χ2 1.608 0.557 0.028 P 0.448 0.455 0.867 Luminal A型 13 3 10 6 20 9 17 三阴型 6 4 18 10 18 7 21 χ2 4.940 1.033 0.598 P 0.085 0.310 0.439 Luminal A型 13 3 10 6 20 9 17 HER-2过表达型 16 6 8 21 9 22 8 χ2 1.253 12.283 8.449 P 0.534 0.000 0.004 Luminal B型 21 11 26 18 40 19 39 三阴型 6 4 18 10 18 7 21 χ2 2.948 0.188 0.539 P 0.229 0.664 0.463 Luminal B型 21 11 26 18 40 19 39 HER-2过表达型 16 6 8 21 9 22 8 χ2 3.078 12.166 13.082 P 0.215 0.000 0.000 三阴型 6 4 18 10 18 7 21 HER-2过表达型 16 6 8 21 9 22 8 χ2 8.733 6.842 13.533 P 0.013 0.009 0.000 表 2 不同分子分型乳腺癌的超声造影时间-强度曲线定量参数(Mean±SD)
分子分型 峰值强度(dB) 达峰时间(s) 平均渡越时间(s) 曲线下面积(dB/s) 消除斜率(dB/s) Luminal A型 7.420±2.283 21.687±7.819 43.099±26.024 389.108±353.846 1.642±1.125 Luminal B型 12.199±2.410 20.405±6.885 33.937±18.641 422.502±364.747 1.836±0.935 三阴性型 17.418±3.806 18.357±7.168 33.841±21.601 493.039±312.561 2.085±1.019 HER-2过表达型 19.749±3.837 20.063±6.473 26.727±17.368 520.550±347.297 2.118±1.422 F 88.013 4.542 2.591 0.875 3.396 P 0.000 0.489 0.056 0.456 0.430 -
[1] 马丹丹, 刘 坤, 齐晓伟. 2018年全球癌症统计: 乳腺癌发病和死亡人数统计[J]. 中华乳腺病杂志: 电子版, 2018, 12(6): 375-6. [2] Gopal RA, Arvold ND, Taghian AG, et al. Breast cancer subtype approximation, and local recurrence after breast-conserving therapy[J]. J Clin Oncol, 2012, 23(3): 290-1. [3] Iwamoto T, Bianchini G, Booser D, et al. Gene pathways associated with prognosis and chemotherapy sensitivity in molecular subtypes of breast cancer[J]. J Natl Cancer Inst, 2011, 103(3): 264-72. doi: 10.1093/jnci/djq524 [4] 田丽元, 陈东风, 曹长军, 等. 乳腺癌超声表现与分子生物学指标的相关性研究[J]. 中国医学影像学杂志, 2011, 19(6): 468-71, 475. doi: 10.3969/j.issn.1005-5185.2011.06.018 [5] 陈慧琪, 郭顺华, 过新民. 乳腺癌超声征象与分子分型相关性分析[J]. 中国超声医学杂志, 2015, 6(6): 498-500. [6] Claudon M, Cosgrove D, Albrecht T, et al. Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) - update 2008[J]. Ultraschall Med, 2008, 29(1): 28-44. doi: 10.1055/s-2007-963785 [7] van't Veer LJ, Dai HY, van Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer[J]. Nature, 2002, 415(6871): 530-6. doi: 10.1038/415530a [8] Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours[J]. Nature, 2000, 406(6797): 747-52. doi: 10.1038/35021093 [9] Park S, Koo JS, Kim MS, et al. Characteristics and outcomes according to molecular subtypes of breast cancer as classified by a panel of four biomarkers using immunohistochemistry[J]. Breast, 2012, 21(1): 50-7. doi: 10.1016/j.breast.2011.07.008 [10] Engstrom MJ, Opdahl S, Hagen AI, et al. Molecular subtypes, histopathological grade and survival in a historic cohort of breast cancer patients[J]. Breast Cancer Res Treat, 2013, 140(3): 463-73. doi: 10.1007/s10549-013-2647-2 [11] Zhao H, Xu R, Ouyang Q, et al. Contrast-enhanced ultrasound is helpful in the differentiation of malignant and benign breast lesions[J]. Europ J Radiol, 2010, 73(2): 288-93. doi: 10.1016/j.ejrad.2009.05.043 [12] 林 韵, 王小燕, 韦海明, 等. 乳腺癌超声造影定量分析参数及增强模式与分子分型的关系[J]. 中国医学影像技术, 2014, 30(3): 406-10. [13] Inwald EC, Koller M, Klinkhammer-Schalke M, et al. 4-IHC classification of breast cancer subtypes in a large cohort of a clinical cancer registry: use in clinical routine for therapeutic decisions and its effect on survival[J]. Breast Cancer Res Treat, 2015, 153(3): 647-58. doi: 10.1007/s10549-015-3572-3 [14] 郑逢洋, 黄备建, 严丽霞, 等. 乳腺癌冠状面汇聚征和生物学行为指标间的相关性研究[J]. 中华超声影像学杂志, 2016, 25(6): 496-501. doi: 10.3760/cma.j.issn.1004-4477.2016.06.009 [15] 蒋 珺, 陈亚青, 徐依耑, 等. 三维超声冠状面汇聚征在评估乳腺癌预后中的价值[J]. 中华超声影像学杂志, 2013, 22(10): 873-6. doi: 10.3760/cma.j.issn.1004-4477.2013.10.015 [16] 陈 欣, 罗葆明, 管小凤, 等. 超微血管成像与超声造影微血管成像在乳腺病变诊断中的对比研究[J]. 中华超声影像学杂志, 2016, 25(7): 608-11. doi: 10.3760/cma.j.issn.1004-4477.2016.07.015 [17] Tan PH, Bay BH, Yip G, et al. Immunohistochemical detection of Ki67 in breast cancer correlates with transcriptional regulation of genes related to apoptosis and cell death[J]. Mod Pathol, 2005, 18(3): 374-81. doi: 10.1038/modpathol.3800254 [18] Park BW, Park S, Park HS, et al. Cyclooxygenase-2 expression in proliferative Ki-67-positive breast cancers is associated with poor outcomes[J]. Breast Cancer Res Treat, 2012, 133(2): 741-51. doi: 10.1007/s10549-012-1971-2 [19] 梁星宇, 王鸿凤, 李紫瑶, 等. 超声造影对不同分子分型乳腺癌鉴别诊断的初步研究[J]. 中华超声影像学杂志, 2018, 27(10): 881-6. doi: 10.3760/cma.j.issn.1004-4477.2018.10.012 [20] Mohammed RA, Ellis IO, Lee AH, et al. Vascular invasion in breast cancer;an overview of recent prognostic developments and molecular pathophysiological mechanisms[J]. Histopathology, 2009, 55(1): 1-9. doi: 10.1111/j.1365-2559.2008.03169.x [21] 李振洲, 罗长锐, 方 凡, 等. 乳腺癌超声造影特征与C-erbB-2、p53表达的相关性研究[J]. 临床超声医学杂志, 2012, 14(9): 585-8. doi: 10.3969/j.issn.1008-6978.2012.09.003 [22] Cichon MA, Degnim AC, Visscher DW, et al. Microenvironment influences that drive progression from breast disease to invasive breast cancer[J]. J Mammary Gland Bio Neoplasia, 2010, 15(4): 389-97. doi: 10.1007/s10911-010-9195-8 [23] 何 鑫, 姜 珏, 黄丽丽, 等. 超声鉴别三阴性乳腺癌与HER-2过表达型乳腺癌的初步研究[J]. 临床超声医学杂志, 2018, 20(3): 165-7. doi: 10.3969/j.issn.1008-6978.2018.03.008 [24] 张玉竹, 贾宛儒, 史俊妮, 等. 三阴性乳腺癌的超声造影特征[J]. 中国超声医学杂志, 2016, 32(11): 970-2. [25] 胡一迪, 谢粜侠, 张 辉, 等. 61例三阴性乳腺癌的临床病理特征及预后因素分析[J]. 中华内分泌外科杂志, 2018, 12(2): 118-23. doi: 10.3760/cma.j.issn.1674-6090.2018.02.008 [26] 吴 芳, 成 静, 马 婷, 等. 不同分子分型乳腺癌的超声造影特征分析[J]. 临床超声医学杂志, 2019, 21(01): 1-4. doi: 10.3969/j.issn.1008-6978.2019.01.001 [27] 高军喜, 马方婧, 杨 磊, 等. 不同分子亚型乳腺癌超声造影特征及定量参数对比研究[J]. 中国临床医学影像杂志, 2019, 30(4): 39-44. [28] Thielemann A, Kopczynski Z, Filas VA, et al. The determination of VEGF and MVD, among patients with primary breast cancer[J]. Pathol Oncol Res, 2008, 14(2): 137-44. doi: 10.1007/s12253-008-9040-1 [29] Kraby MR, Kruger K, Opdahl S, et al. Microvascular proliferation in luminal A and basal-like breast cancer subtypes[J]. J Clin Pathol, 2015, 68(11): 891-7. doi: 10.1136/jclinpath-2015-203037