留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

组织抑制剂金属蛋白酶-2联合胰岛素样生长因子结合蛋白-7对危重患者急性肾损伤的预测价值

李倩琴 郑少忆 徐榕呤 林雪峰 肖泽周 朱鹏 王睿苓

李倩琴, 郑少忆, 徐榕呤, 林雪峰, 肖泽周, 朱鹏, 王睿苓. 组织抑制剂金属蛋白酶-2联合胰岛素样生长因子结合蛋白-7对危重患者急性肾损伤的预测价值[J]. 分子影像学杂志, 2019, 42(2): 227-233. doi: 10.12122/j.issn.1674-4500.2019.02.20
引用本文: 李倩琴, 郑少忆, 徐榕呤, 林雪峰, 肖泽周, 朱鹏, 王睿苓. 组织抑制剂金属蛋白酶-2联合胰岛素样生长因子结合蛋白-7对危重患者急性肾损伤的预测价值[J]. 分子影像学杂志, 2019, 42(2): 227-233. doi: 10.12122/j.issn.1674-4500.2019.02.20
Qianqin LI, Shaoyi ZHENG, Rongning XU, Xuefeng LIN, Zezhou XIAO, Peng ZHU, Ruiling WANG. Predictive value of TIMP-2 combined with IGFBP-7 for acute kidney injury in critically patients[J]. Journal of Molecular Imaging, 2019, 42(2): 227-233. doi: 10.12122/j.issn.1674-4500.2019.02.20
Citation: Qianqin LI, Shaoyi ZHENG, Rongning XU, Xuefeng LIN, Zezhou XIAO, Peng ZHU, Ruiling WANG. Predictive value of TIMP-2 combined with IGFBP-7 for acute kidney injury in critically patients[J]. Journal of Molecular Imaging, 2019, 42(2): 227-233. doi: 10.12122/j.issn.1674-4500.2019.02.20

组织抑制剂金属蛋白酶-2联合胰岛素样生长因子结合蛋白-7对危重患者急性肾损伤的预测价值

doi: 10.12122/j.issn.1674-4500.2019.02.20
基金项目: 广州科技规划项目(201804010067)
详细信息
    作者简介:

    李倩琴,硕士,主治医师,E-mail:grape_branch@163.com

    通讯作者:

    郑少忆,博士生导师,主任医师,E-mail:shaoyizheng@vip.sina.com

Predictive value of TIMP-2 combined with IGFBP-7 for acute kidney injury in critically patients

  • 摘要: 目的总结组织抑制剂金属蛋白酶(TIMP)-2联合胰岛素样生长因子结合蛋白(IGFBP)-7对于急性肾损伤AKI患者的预测效能。方法在MEDLINE,EMBASE,Web of Science,Clinical Trials.gov,Cochrane Library,Google Scholar进行检索,筛选出13篇相关研究,使用STATA version17.0及R version3.2.2进行统计分析,根据不同的折点计算合并敏感性、合并特异性及95%可信区间。计算合并的曲线下面积及置信区间。结果[TIMP-2]×[IGFBP-7]对于急性肾损伤预测效能总的合并曲线下面积为0.84(95%CI, 0.78-0.90);非手术组为0.76(95%CI, 0.68-0.84);手术组曲线下面积为0.84(95%CI, 0.81-0.88);德国亚组为(95%CI, 0.79-0.83);美国亚组为0.82(95%CI, 0.79-0.95)。当折点为0.3,[TIMP-2]×[IGFBP-7]对于急性肾损伤预测的敏感性为86%,特异性为57%;当折点为2.0,[TIMP-2]×[IGFBP-7]预测的敏感性为37%,特异性为91%。结论对于包括术后患者在内的重症患者,TIMP-2联合IGFBP-7具有较理想的曲线下面积、敏感性及特异性。

     

  • 图  1  漏斗图

    图  2  合并AUC

    图  3  合并敏感性及特异性

    图  4  手术及ICU亚组分析

    图  5  不同国家亚组AUC

    表  1  纳入研究的一般情况

    作者 患者类型 年份 国家 诊断标准 AKI/No-AKI 样本收集时间(h) [TIMP-2] ×
    [IGFBP7] AUC
    敏感性 特异性 Cut off
    样本数目(n 年龄(岁) 性别(男)
    Max Bell[14] ICU患者 2015 Sweden KDIGO 19/75 66/50 84%/33% <48 0.4(0.24-0.57) NA NA NA
    Martin Kimmel[15] ICU患者 2016 Germany KDIGO 46/252 65/63 72%/73% <29 0.77(0.72-0.86) 76% 94% 53% 30% 0.32
    Michael Heung[16] ICU患者 2016 USA KDIGO 139/992 62/65 59%/53% <36 0.81(0.77-0.85) 100% 55% 0.3
    KyleJ.Gunnerson[17] 心脏手术 2016 USA KDIGO 35/340 67/64 66%/64% <36 0.84(0.76-0.9) 89% 40% 49% 94% 0.32
    Kevin Pilarczyk[18] 心脏手术 2015 Germany KDIGO 6/54 68.8/76.2 79.6%/83.3% <24 0.817(0.622-1) 89% 81% 0.817
    Ivan Gocze[19] 普通手术 2015 Germany KDIGO 45/62 NA NA 0 0.853(0.779-0.926) NA NA NA
    Melanie Meersch[20] 心脏手术 2014 Germany KDIGO 26/24 70/72 69.2/62.5 <24(0, 4, 12, 24) 0.9(0.79-1) 73% 58% 0.3
    AzraBihorac[21] ICU患者 2014 USA KDIGO 71/337 63/62 55%/49% 0 0.82(0.76-0.88) 92% 37% 46% 95% 0.32
    Cedrick Zaouter [22] 心脏手术 2018 France KDIGO 37/50 73/71 49%/77% <24(0, 4, 12, 24) 0.78(0.62-0.93) 65% 62% 0.3
    Oezkurr [23] 心脏手术 2017 Germany KDIGO 35/150 NA NA <48 0.81(0.67-0.94) 60% 88% 0.3
    Fabian Dusse[24] 心脏手术 2016 Germany KDIGO 15/40 81/80 37.5%/40.6% <24 0.869(0.721-1.0) 75.0% 55.2% 0.91
    Yimei Wang[25] 心脏手术 2017 China KDIGO 20/57 64/53 95%/71.9% <24 0.80(0.68-0.91) 75% 70% 0.3
    Honore[26] ICU患者 2016 Germany KDIGO 40/232 64/62 43%/53% <12 0.84(0.73-0.92) 95% 38% 0.3
    下载: 导出CSV
  • [1] Wijeysundera DN, Karkouti K, Dupuis J, et al. Derivation and validation of a simplified predictive index for renal replacement therapy after cardiac surgery[J]. JAMA, 2007, 297(16): 1801-9. doi: 10.1001/jama.297.16.1801
    [2] Chertow GM, Levy EM, Hammermeister K, et al. Independent association between acute renal failure and mortality following cardiac surgery[J]. Am J Med, 1998, 104(4): 343-8. doi: 10.1016/S0002-9343(98)00058-8
    [3] Mangano CM, Diamondstone LS, Ramsay JG, et al. Renal dysfunction after myocardial revascularization: risk factors, adverse outcomes and hospital resource utilization[J]. Ann Int Med, 1998, 128(2): 194-203.
    [4] Zanardo G, Michielon P, Paccagnella A, et al. Acute renal failure in the patient undergoing cardiac operation, prevalence, mortality rate, and main risk factors[J]. J Thorac Cardiovasc Surg, 1994, 107(23): 1489-95.
    [5] Lassnigg A, Schmidlin D, Mouhieddine M, et al. Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study[J]. J Am Soc Nephrol, 2004, 15(6): 1597-605. doi: 10.1097/01.ASN.0000130340.93930.DD
    [6] Rosner MH, OkusaMD. Acute kidney injury associated with cardiac surgery[J]. Clin J Am Soc Nephrol, 2006, 17(1): 19-32.
    [7] Mehta RH, Grab JD, O'brien SM, et al. Bedside tool for predicting the risk of postoperative dialysis in patients undergoing cardiac surgery[J]. Circulation, 2006, 114(21): 2208-16. doi: 10.1161/CIRCULATIONAHA.106.635573
    [8] Thakar CV, Arrigain S, Worley S, et al. A clinical score to predict acute renal failure after cardiac surgery[J]. J Am Soc Nephrol, 2005, 16(1): 162-8. doi: 10.1681/ASN.2004040331
    [9] Kellum JA, LameireN. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1)[J]. Critic Care, 2013, 17(2): 204-13.
    [10] Whiting P, Rutjes AW, Reitsma JB, et al. The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews[J]. BMC Med Res Methodol, 2003, 3(1): 25-34. doi: 10.1186/1471-2288-3-25
    [11] Hamza TH, Reitsma JB, StijnenT. Meta-analysis of diagnostic studies: a comparison of random intercept, normal-normal, and binomial-normal bivariate summary ROC approaches[J]. Med Decis Making, 2008, 28(7): 639-49.
    [12] Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses[J]. BMJ, 2003, 327(7414): 557-60. doi: 10.1136/bmj.327.7414.557
    [13] Hamza TH, Arends LR, van Houwelingen HC, et al. Multivariate random effects meta-analysis of diagnostic tests with multiple thresholds[J]. BMC Med Res Methodol, 2009, 17(9): 73-9.
    [14] Bell M, Larsson A, Venge P, et al. Assessment of cell-cycle arrest biomarkers to predict early and delayed acute kidney injury[J]. Dis Markers, 2015, 20(6): 658-67.
    [15] Kimmel M, Shi J, Latus J, et al. Association of renal stress/damage and filtration biomarkers with subsequent AKI during hospitalization among patients presenting to the emergency department[J]. Clin J Am Soc Nephrol, 2016, 11(6): 938-46. doi: 10.2215/CJN.10551015
    [16] Heung M, Ortega LM, Chawla LS, et al. Common chronic conditions do not affect performance of cell cycle arrest biomarkers for risk stratification of acute kidney injury[J]. Europ Renal Associat, 2016, 78(31): 1633-40.
    [17] Gunnerson KJ, Shaw AD, Chawla LS, et al. TIMP2•IGFBP7 biomarker panel accurately predicts acute kidney injury in high-risk surgical patients[J]. J Trauma Acute Care Surg, 2016, 80(2): 243-9. doi: 10.1097/TA.0000000000000912
    [18] Pilarczyk K, Edayadiyil-Dudasova M, Wendt D, et al. Urinary[TIMP-2] for early prediction of acute kidney injury after coronary artery bypass surgery[J]. Annals Intens Care, 2015, 17(5): 50-8.
    [19] Gocze I, Koch M, Renner P, et al. Urinary biomarkers TIMP-2 and IGFBP7 early predict acute kidney injury after major surgery[J]. PLoS One, 2015, 10(3): e0120863-71. doi: 10.1371/journal.pone.0120863
    [20] Meersch M, Schmidt C, Van Aken H, et al. Urinary TIMP-2 and IGFBP7 as early biomarkers of acute kidney injury and renal recovery following cardiac surgery[J]. PLoS One, 2014, 9(6): e93460-7.
    [21] Bihorac A, Chawla LS, Shaw AD, et al. Validation of Cell-Cycle arrest biomarkers for acute kidney injury using clinical adjudication[J]. Am J Respir Crit Care Med, 2014, 189(8): 932-9. doi: 10.1164/rccm.201401-0077OC
    [22] Zaouter C, Potvin J, Bats ML, et al. A combined approach for the early recognition of acute kidney injury after adult cardiac surgery[J]. Anaesth Critic Care Pain Med, 2018, 37(4): 335-41. doi: 10.1016/j.accpm.2018.05.001
    [23] Oezkur M, Magyar A, Thomas P, et al. Timp-2*igfbp7 (nephrocheck(r)) measurements at intensive care unit admission after cardiac surgery are predictive for acute kidney injury within 48 hours[J]. Kidney Blood Press Res, 2017, 42(9): 456-67.
    [24] Dusse F, Edayadiyil-Dudasova M, Thielmann M, et al. Early prediction of acute kidney injury after transapical and transaortic aortic valve implantation with urinary g1 cell cycle arrest biomarkers[J]. BMC anesthesiol, 2016, 16(1): 76-83.
    [25] Wang Y, Zou Z, Jin J, et al. Urinary timp-2 and igfbp7 for the prediction of acute kidney injury following cardiac surgery[J]. BMC Nephrol, 2017, 59(28): 177-85.
    [26] Honore PM, Nguyen HB, Gong M, et al. Urinary tissue inhibitor of metalloproteinase-2 and Insulin-Like growth Factor-Binding protein 7 for risk stratification of acute kidney injury in patients with sepsis[J]. Crit Care Med, 2016, 44(10): 1851-60. doi: 10.1097/CCM.0000000000001827
    [27] Bellomo R, Kellum JA, Ronco C. Defining acute renal failure: physiological principles[J]. Intensive Care Med, 2004, 30(1): 33-7. doi: 10.1007/s00134-003-2078-3
    [28] Murray PT, Le Gall JR, Dos Reis MD, et al. Physiologic endpoints (efficacy) for acute renal failure studies[J]. Curr Opin Crit Care, 2002, 13(8): 519-25.
    [29] Svenmarker S, Haggmark S, Holmgren A, et al. Serum markers are not reliable measures of renal function in conjunction with cardiopulmonary bypass[J]. Interact Cardiovasc Thorac Surg, 2011, 37(12): 713-7.
    [30] Wagener G, Jan M, Kim M, et al. Association between increases in urinary neutrophil gelatinase-associated lipocalin and acute renal dysfunction after adult cardiac surgery[J]. Anesthesiology, 2006, 105(3): 485-91. doi: 10.1097/00000542-200609000-00011
    [31] Waikar SS, Betensky RA, Emerson SC. Imperfect Gold standards for kidney injury biomarker evaluation[J]. J Am Soc Nephrol, 2012, 23(1): 13-21. doi: 10.1681/ASN.2010111124
    [32] Melnikov VY, Faubel S, Siegmund B, et al. Neutrophil-independent mechanisms of caspase-1- and IL-18-mediated ischemic acute tubular necrosis in mice[J]. J Clin Invest, 2002, 110(8): 1083-91. doi: 10.1172/JCI0215623
    [33] Mishra J, Ma Q, Prada A, et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury[J]. J Am Soc Nephrol, 2003, 14(10): 2534-43. doi: 10.1097/01.ASN.0000088027.54400.C6
    [34] Koyner JL, Bennett MR, Worcester EM, et al. Urinary cystatin C as an early biomarker of acute kidney injury following adult cardiothoracic surgery[J]. Kidney Int, 2008, 74(8): 1059-69. doi: 10.1038/ki.2008.341
    [35] Han WK, Bailly V, Abichandani R, et al. Kidney injury molecule-1, a novel biomarker for human renal proximal tubule injury[J]. Kidney Int, 2002, 62(KIM/1): 237-44.
    [36] Perry TE, Muehlschlegel JD, Liu KY, et al. Plasma neutrophil gelatinase-associated lipocalin and acute postoperative kidney injury in adult cardiac surgical patients[J]. Anesth Analg, 2010, 110(6): 1541-7. doi: 10.1213/ANE.0b013e3181da938e
    [37] Zhang Z, Xu X, Ni H, et al. Serumcystatin C is associated with renal function recovery in critically ill patients undergoing continuous renal replacement therapy[J]. Nephron Clin Pract, 2012, 259(12): 86-92.
    [38] Nejat M, Pickering JW, Walker RJ, et al. Urinary cystatin C is diagnostic of acute kidney injury and sepsis, and predicts mortality in the intensive care unit[J]. Crit Care, 2010, 14(3): R85-92. doi: 10.1186/cc9014
    [39] Han WK, Wagener G, Zhu YQ, et al. Urinary biomarkers in the early detection of acute kidney injury after cardiac surgery[J]. Clin J Am Soc Nephrol, 2009, 4(5): 873-82. doi: 10.2215/CJN.04810908
    [40] Kellum JA. Diagnostic criteria for acute kidney injury: present and future[J]. Crit Care Clin, 2015, 31(4): 621-7. doi: 10.1016/j.ccc.2015.06.001
    [41] Wang ZC, Famulski K, Lee J, et al. TIMP2 and TIMP3 have divergent roles in early renal tubulointerstitial injury[J]. Kidney Int, 2014, 85(1): 82-93. doi: 10.1038/ki.2013.225
    [42] Hwa V, Oh Y, Rosenfeld RG. The insulin-like growth factor-binding protein (IGFBP) superfamily[J]. Endocr Rev, 1999, 20(6): 761-87.
    [43] Vijayan A, Faubel S, Askenazi DJ, et al. Clinicaluse of the urine biomarker[TIMP-2]xfor acute kidney injury risk assessmen[J]. Am J Kidney Dis, 2016, 68(1): 19-28. doi: 10.1053/j.ajkd.2015.12.033
    [44] Kashani K, Al-Khafaji A, Ardiles T, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury[J]. Crit Care, 2013, 17(1): R25-36. doi: 10.1186/cc12503
    [45] Parolari A, Pesce LL, Pacini D, et al. Risk factors for perioperative acute kidney injury after adult cardiac surgery: role of perioperative management[J]. Ann Thorac Surg, 2012, 93(2): 584-91. doi: 10.1016/j.athoracsur.2011.09.073
    [46] Lagny MG, Jouret F, Koch JN, et al. Incidence and outcomes of acute kidney injury after cardiac surgery using either criteria of the RIFLE classification[J]. BMC Nephrol, 2015, 16(3): 76-88.
    [47] Lopez-Delgado JC, Esteve F, Torrado H, et al. Influence of acute kidney injury on short-and long-term outcomes in patients undergoing cardiac surgery: risk factors and prognostic value of a modified RIFLE classification[J]. Critic Care, 2013, 17(6): R293-31. doi: 10.1186/cc13159
    [48] Gomez H, Ince C, De Backer D, et al. A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury[J]. Shock, 2014, 41(1): 3-11. doi: 10.1097/SHK.0000000000000052
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1210
  • HTML全文浏览量:  604
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-16
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日