Advances in mechanism of root development
-
摘要: 牙的发育是一个长期复杂的生物学过程,包括牙胚的发生、组织形成和牙的萌出,分为牙冠的发育和牙根的发育,牙根的发育开始于牙冠形成之后,是由上皮和外胚间充质组织共同调控完成的,且包括牙本质及牙骨质的发育。近几十年来学者们进行了大量的实验研究,对牙冠的发育机制已有了深入的了解,而对牙根的发育机制知之甚少。牙源性干细胞的发现推动了牙组织工程的进展,其与牙根发育联系紧密,而具体机制尚未明确。本文对近年来牙根发育机制的研究进展及其与牙源性干细胞的联系做一综述。Abstract: Tooth development is a long-term and complicated biological process which includes the occurrence of tooth germs, the formation of dental tissues and the eruption of the tooth. It includes the development of the crown and the root. After the formation of the tooth crown, the development of the tooth begins. It is regulated by the epithelial and the ectodermal mesenchymal tissues, including the development of the dentin and the cementum. In recent decades, scholars carried out a large number of experimental studies of the development mechanism of the crown. And it has been in-depth understanding. However, the regulatory mechanism of the root is poorly understood. Recently, the discovery of dental stem cells has promoted the progress of dental tissue engineering. It is also closely related to root development. However, the mechanism is still unclear. This article reviews the development mechanism of the root and the relationship between root development and dental stem cells.
-
Key words:
- root development /
- signaling pathway /
- molecular mechanism /
- odontogenic stem cells /
- root regeneration
-
[1] 盖立婷,徐高祥,姜 秋.影响牙根发育因素的研究进展[J].口腔医学研究,2015,31(05):531-3. [2] Kumakami-Sakano M, Otsu K, Fujiwara N, et al. Regulatory mechanisms of Hertwig′s epithelial root sheath formation and anomaly correlated with root length[J]. Exp Cell Res, 2014, 325(2, SI): 78-82 [3] Huang XF, Chai Y. Molecular regulatory mechanism of tooth root development[J]. Int J Oral Sci, 2012, 4(4): 177-81 [4] Zeichner-David M, Oishi K, Su ZY, et al. Role of hertwig′s epithelial root sheath cells in tooth root development[J]. Dev Dyn, 2003, 228(4): 651-63 [5] Hasegawa K, Wada H, Nagata K, et al. Facioscapulohumeral muscular dystrophy (FSHD) region gene 1(FRG1) expression and possible function in mouse tooth germ development[J]. J Mol Histol, 2016, 47(4): 375-87 [6] Nakashima K, Zhou X, Kunkel G, et al. The novel Zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation[J]. Cell, 2002, 108(1): 17-29 [7] Lee DS, Choung HW, Kim H, et al. NFI-C regulates osteoblast differentiation via control of osterix expression[J]. Stem Cells, 2014, 32(9): 2467-79 [8] He YD, Sui BD, Li M, et al. Site-specific function and regulation of Osterix in tooth root formation[J]. Int Endod J, 2016, 49(12): 1124-31 [9] Wang J, Feng JQ. Signaling pathways critical for tooth root formation[J]. J Dent Res, 2017, 96(11): 478-585 [10] Kague E, Witten PE, Soenens M, et al. Zebrafish sp7 mutants show tooth cycling Independent of attachment,eruption and poor differentiation of teeth[J]. Dev Biol, 2018, 435(2): 176-84 [11] Kim TH, Bae CH, Lee JC, et al. Osterix regulates tooth root formation in a site-specific manner[J]. J Dent Res, 2015, 94(3): 430-8 [12] 傅钰, 黄倩雯, 林陈胜. BMP信号通路在哺乳动物牙齿发育中的研究进展[J]. 科学家, 2016, 4(6): 69-69 [13] Li J, Parada C, Chai Y. Cellular and molecular mechanisms of tooth root development[J]. Development, 2017, 144(3): 374-84 [14] Zhang R, Teng Y, Zhu L, et al. Odontoblast β-catenin signaling regulates fenestration of mouse Hertwig’s epithelial root sheath[J]. Sci China Life Sci, 2015, 58(9): 876-81 [15] 马雨楠, 游颖, 沈欢欢, 等. Noggin基因沉默对BMP和Wnt信号通路表达的影响[J]. 中国实验动物学报, 2016, 24(5): 475-80 [16] Long F. Building strong bones:molecular regulation of the osteoblast lineage[J]. Nat Rev Mol Cell Biol, 2012, 13(1): 27-38 [17] Bae CH, Kim TH, Ko SO, et al. Wntless regulates dentin apposition and root elongation in the mandibular molar[J]. J Dent Res, 2015, 94(3): 439-45 [18] Sakisaka Y, Tsuchiya M, Nakamura TA, et al. Wnt5a attenuates Wnt3a-induced alkaline phosphatase expression in dental follicle cells[J]. Exp Cell Res, 2015, 336(1): 85-93 [19] Nemoto E, Sakisaka Y, Tsuchiya M, et al. Wnt3a signaling induces murine dental follicle cells to differentiate into cementoblastic/osteoblastic cells via an osterix-dependent pathway[J]. J Periodontal Res, 2015, 51(2): 164-74 [20] Wang H, Pan M, Ni J, et al. ClC-7 deficiency impairs tooth development and eruption[J]. Sci Rep, 2016, 45(6): 19971-9 [21] Xue Y, Wang WG, Mao TQ, et al. Report of two Chinese patients suffering from CLCN7-related osteopetrosis and root dysplasia[J]. J Craniomaxillofac Surg, 2012, 40(5): 416-20 [22] Onodera T, Sakai T, Hsu JC, et al. Btbd7 regulates epithelial cell dynamics and branching morphogenesis[J]. Science, 2010, 329(5991): 562-5 [23] 杨秀义, 张君, 宫言虎, 等. Btbd7基因在SD乳鼠牙根发育中的表达[J]. 口腔医学, 2017, 25(2): 110-3 [24] Volponi AA. Y pang and PT sharpe,stem cell-based biological tooth repair and regeneration[J]. Trends Cell Biol, 2010, 20(12): 715-22 [25] Zhang W, Zhang X, Li J, et al. Foxc2 and BMP2 induce osteogenic/odontogenic differentiation and mineralization of human stem cells from apical papilla[J]. Stem Cells Intern, 2018, 51(6): 2363917-26 [26] Wang W, Dang M, Zhang Z, et al. Dentin regeneration by stem cells of apical papilla on injectable nanofibrous microspheres and stimulated by controlled BMP-2 release[J]. Acta Biomater, 2016, 36(1): 63-72 [27] Zhang W, Zhang X, Ling J, et al. Osteo-/odontogenic differentiation of BMP2 and VEGF gene-co-transfected human stem cells from apical papilla[J]. Mol Med Rep, 2016, 13(5): 3747-54 [28] Jamal M, Chogle SM, Karam SM, et al. NOTCH3 is expressed in human apical papilla and in subpopulations of stem cells isolated from the tissue[J]. Genes Dis, 2015, 2(3): 261-7 [29] Uribe-Etxebarria V, Luzuriaga J, Gallastegui PG, et al. Notch/Wnt cross-signalling regulates stemness of dental pulp stem cells through expression of neural crest and core pluripotency factors[J]. Eur Cell Mater, 2017, 34(2): 249-70 [30] Yang Y, Zhao Y, Liu X, et al. Effect of SOX2 on odontoblast differentiation of dental pulp stem cells[J]. Mol Med Rep, 2017, 16(6): 9659-63 [31] Cui YM, Han XH, Lin YY, et al. TNF-alpha was involved in Calcium hydroxide-promoted osteogenic differentiation of human DPSCs through NF-kappa B/p38MAPK/Wnt pathway[J]. Pharmazie, 2017, 72(6): 329-33 [32] Xu JG, Zhu SY, Heng BC, et al. TGF-beta 1-induced differentiation of SHED into functional smooth muscle cells[J]. Stem Cell Res Ther, 2017, 8(1): 10-8 [33] Eramo S, Natali A, Pinna R, et al. Dental pulp regeneration via cell homing[J]. Int Endod J, 2018, 51(4): 405-19 [34] Thesleff I. Current understanding of the process of tooth formation:transfer from the laboratory to the clinic[J]. Aust Dent J, 2014, 59(1): 48-54
点击查看大图
计量
- 文章访问数: 2783
- HTML全文浏览量: 1078
- PDF下载量: 28
- 被引次数: 0