留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

MicroRNA-21在非酒精性脂肪肝病中的分子机制

王秀梅 李昌平

王秀梅, 李昌平. MicroRNA-21在非酒精性脂肪肝病中的分子机制[J]. 分子影像学杂志, 2019, 42(1): 87-90. doi: 10.12122/j.issn.1674-4500.2019.01.20
引用本文: 王秀梅, 李昌平. MicroRNA-21在非酒精性脂肪肝病中的分子机制[J]. 分子影像学杂志, 2019, 42(1): 87-90. doi: 10.12122/j.issn.1674-4500.2019.01.20
Xiumei WANG, Changping LI. Molecular mechanism of MicroRNA-21 in non-alcoholic fatty liver disease[J]. Journal of Molecular Imaging, 2019, 42(1): 87-90. doi: 10.12122/j.issn.1674-4500.2019.01.20
Citation: Xiumei WANG, Changping LI. Molecular mechanism of MicroRNA-21 in non-alcoholic fatty liver disease[J]. Journal of Molecular Imaging, 2019, 42(1): 87-90. doi: 10.12122/j.issn.1674-4500.2019.01.20

MicroRNA-21在非酒精性脂肪肝病中的分子机制

doi: 10.12122/j.issn.1674-4500.2019.01.20
基金项目: 四川省科学技术厅资助项目(14JC0087)
详细信息
    作者简介:

    王秀梅,在读研究生,E-mail: 381114834@qq.com

    通讯作者:

    李昌平,主任医师,E-mail: 506854209@qq.com

Molecular mechanism of MicroRNA-21 in non-alcoholic fatty liver disease

  • 摘要: MicroRNA(miRNA)是一类内生的、长度为19~25个核苷酸的非编码小RNAs,其在细胞内具有多种调节作用,主要通过靶向mRNAs的3′-UTR区完全或不完全性结合,影响靶向基因表达的翻译和转录后调节,从而调节不同细胞的增殖,凋亡和分化等。近来研究发现microRNA-21参与非酒精性脂肪肝病的发病,与其进展及预后相关。综合研究发现microRNA-21的表达可以通过多种靶标,如HMGCR、LRP6、PPAR-α等参与非酒精性脂肪肝病及其相关并发症的发生发展。本文就microRNA-21在非酒精性脂肪肝病不同发展阶段中的作用及其分子机制作一综述,并为进一步的研究治疗非酒精性脂肪肝病提供依据。

     

  • [1] Hardy T, Oakley F, Anstee QM, et al. Nonalcoholic fatty liver disease: pathogenesis and disease spectrum[J]. Annu Rev Pathol, 2016, 11(11): 451-96
    [2] He Z, Hu C, Jia WP. miRNAs in non-alcoholic fatty liver disease[J]. Front Med, 2016, 10(4): 389-96 doi: 10.1007/s11684-016-0468-5
    [3] Jhaas Jt, Francque S. Pathophysiology and mechanisms of nonalcoholic fatty liver disease[J]. Annu Rev physiol, 2016, 78(2): 181-205
    [4] Shubham K, Vinay L, Vinod PK. Systems-level organization of non-alcoholic fatty liver disease progression network[J]. Mol Biosyst, 2017, 13(9): 1898-911 doi: 10.1039/C7MB00013H
    [5] Janssen AW, Houben T, Katiraei S, et al. Modulation of the gut microbiota impacts nonalcoholic fatty liver disease: a potential role for bile acids[J]. J Lipid Res, 2017, 58(7): 1399-416 doi: 10.1194/jlr.M075713
    [6] Bhanji RA, Narayanan P, Allen AM, et al. Sarcopenia in hiding: The risk and consequence of underestimating muscle dysfunction in NASH[J]. Hepatology, 2017, 66(5): 512-9
    [7] Meex RR. Watt matthew J. hepatokines: linking nonalcoholic fatty liver disease and insulin resistance[J]. Nat Rev Endocrinol, 2017, 13(9): 509-20 doi: 10.1038/nrendo.2017.56
    [8] Mehta R, Otgonsuren M, Younoszai Z, et al. Circulating miRNA in patients with non-alcoholic fatty liver disease and coronary artery disease[J]. BMJ Open Gastroenterol, 2016, 3(1): e000096-102 doi: 10.1136/bmjgast-2016-000096
    [9] Singh AK, Aryal B, Zhang X, et al. Posttranscriptional regulation of lipid metabolism by non-coding RNAs and RNA binding proteins[J]. Semin Cell Dev Biol, 2017, 11(2): 026-35
    [10] Tryndyak VP, Marrone AK, Latendresse JR, et al. MicroRNA changes, activation of progenitor cells and severity of liver injury in mice induced by choline and folate deficiency[J]. J Nutr Biochem, 2016, 28(1): 83-90
    [11] Becker PP, Rau M, Schmitt J, et al. Performance of serum microRNAs-122, -192 and-21 as biomarkers in patients with Non-Alcoholic steatohepatitis[J]. PLoS One, 2015, 10(11): e0142661-72 doi: 10.1371/journal.pone.0142661
    [12] Huang Y, He Y, Li J. MicroRNA-21: a central regulator of fibrotic diseases via various targets[J]. Curr Pharm Des, 2015, 21(17): 2236-42 doi: 10.2174/1381612820666141226095701
    [13] Vinciguerra M, Sgroi A, Veyrat-Durebex C, et al. Unsaturated fatty acids inhibit the expression of tumor suppressor phosphatase and tensin homolog (PTEN) via microRNA-21 up-regulation in hepatocytes[J]. Hepatology, 2009, 49(4): 1176-84 doi: 10.1002/hep.22737
    [14] Ahn J, Lee H, Jung CH, et al. Lycopene inhibits hepatic steatosis via microRNA-21-induced downregulation of fatty acid-binding protein 7 in mice fed a high-fat diet[J]. Mol Nutr Food Res, 2012, 56(11): 1665-74 doi: 10.1002/mnfr.v56.11
    [15] Sun CZ, Huang FZ, Liu XY, et al. miR-21 regulates triglyceride and cholesterol metabolism in non-alcoholic fatty liver disease by targeting HMGCR[J]. Int J Mol Med, 2015, 35(3): 847-53 doi: 10.3892/ijmm.2015.2076
    [16] Zhao XY. Roles of MicroRNA-21 in the Pathogenesis of Insulin Resistance and Diabetic Mellitus-induced Non-alcoholic Fatty Liver Disease[J]. Acta Academiae Medicinae Sinicae, 2016, 38(2): 144-9
    [17] Li CP, Li HJ, Nie J, et al. Mutation of miR-21 targets endogenous lipoprotein receptor-related protein 6 and nonalcoholic fatty liver disease[J]. Am J Transl Res, 2017, 9(2): 715-21
    [18] Go GW. Low-Density lipoprotein Receptor-Related protein 6 (LRP6) is a novel nutritional therapeutic target for hyperlipidemia, Non-Alcoholic fatty liver disease, and atherosclerosis[J]. Nutrients, 2015, 7(6): 4453-64 doi: 10.3390/nu7064453
    [19] Go GW, Srivastava R, Hernandez-Ono AA, et al. The combined hyperlipidemia caused by impaired Wnt-LRP6 signaling is reversed by Wnt3a rescue[J]. Cell Metab, 2014, 19(2): 209-20 doi: 10.1016/j.cmet.2013.11.023
    [20] Francque S, Verrijken A, Caron S, et al. PPAR alpha gene expression correlates with severity and histological treatment response in patients with non-alcoholic steatohepatitis[J]. J Hepatol, 2015, 63(1): 164-73 doi: 10.1016/j.jhep.2015.02.019
    [21] Ren TT, Zhu JJ, Zhu LL, et al. The combination of blueberry juice and probiotics ameliorate Non-Alcoholic steatohepatitis (NASH) by affecting SREBP-1c/PNPLA-3 pathway via PPAR-alpha[J]. Nutrients, 2017, 9(3): 258-63 doi: 10.3390/nu9030258
    [22] Loyer X, Paradis V, Henique C, et al. Liver microRNA-21 is overexpressed in non-alcoholic steatohepatitis and contributes to the disease in experimental models by inhibiting PPAR alpha expression[J]. Gut, 2016, 65(11): 1882-94 doi: 10.1136/gutjnl-2014-308883
    [23] Rodrigues PM, Afonso MB, Simao AL, et al. miR-21 ablation and obeticholic acid ameliorate nonalcoholic steatohepatitis in mice[J]. Cell Death Dis, 2017, 8(5): e2825-32 doi: 10.1038/cddis.2017.246
    [24] Dattaroy D, Pourhoseini S, Das S, et al. Micro-RNA 21 inhibition of SMAD7 enhances fibrogenesis via leptin-mediated NADPH oxidase in experimental and human nonalcoholic steatohepatitis[J]. Am J Physiol Gastrointest Liver Physiol, 2015, 308(4): G298-312 doi: 10.1152/ajpgi.00346.2014
    [25] Yang F, Luo L, Zhu ZD, et al. Chlorogenic acid inhibits liver fibrosis by blocking the miR-21-Regulated TGF-β1/Smad7 signaling pathwayand[J]. Frontiers Pharmacol, 2017, 8(9): 929-36
    [26] Jin K, Li T, Sanchez-Duffhues G, et al. Involvement of inflammation and its related microRNAs in hepatocellular carcinoma[J]. Oncotarget, 2017, 8(13): 22145-65
    [27] Wu KM, Ye CH, Lin L, et al. Inhibiting miR-21 attenuates experimental hepatic fibrosis by suppressing both the ERK1 pathway in HSC and hepatocyte EMT[J]. Clin Sci, 2016, 130(16): 1469-80 doi: 10.1042/CS20160334
    [28] Ning ZW, Luo XY, Wang GZ, et al. MicroRNA-21 mediates angiotensin II-Induced liver fibrosis by activating NLRP3 inflammasome/IL-1 beta axis via targeting Smad7 and spry1[J]. Antioxid Redox Signal, 2017, 27(1): 1-20 doi: 10.1089/ars.2016.6669
    [29] Caviglia JM, Yan J, Jang MK, et al. MicroRNA-21 and dicer are dispensable for hepatic stellate cell activation and the development of liver fibrosis[J]. Hepatology, 2018, 67(6): 2414-29 doi: 10.1002/hep.29627
    [30] Jiang JH, Yang PP, Guo Z, et al. Overexpression of microRNA-21 strengthens stem cell-like characteristics in a hepatocellular carcinoma cell line[J]. World J Surg Oncol, 2016, 14(1): 10-9
    [31] Wang ZP, Yang H, Ren L. MiR-21 promoted proliferation and migration in hepatocellular carcinoma through negative regulation of Navigator-3[J]. Biochem Biophys Res Commun, 2015, 464(4): 1228-34 doi: 10.1016/j.bbrc.2015.07.110
    [32] Mao B, Xiao H, Zhang Z, et al. MicroRNA21 regulates the expression of BTG2 in HepG2 liver cancer cells[J]. Molecular medicine reports, 2015, 12(4): 4917-24 doi: 10.3892/mmr.2015.4051
    [33] Hu SX, Tao RY, Wang SY, et al. MicroRNA-21 promotes cell proliferation in human hepatocellular carcinoma partly by targeting HEPN1[J]. Tumour Biol, 2015, 36(7): 5467-72 doi: 10.1007/s13277-015-3213-9
    [34] Wagenaar TR, Zabludoff S, Ahn S, et al. Anti-miR-21 suppresses hepatocellular carcinoma growth via broad transcriptional network deregulation[J]. Mol Cancer Res, 2015, 13(6): 1009-21 doi: 10.1158/1541-7786.MCR-14-0703
    [35] Wu H, Ng R, Chen X, et al. MicroRNA-21 is a potential Link between non-alcoholic fatty liver disease and hepatocellular carcinoma via modulation of the HBP1-p53-Srebp1c pathway[J]. Gut, 2015, 65(11): 1850-60
    [36] He W, Wang C, Mu R, et al. MiR-21 is required for anti-tumor immune response in mice: an implication for its bi-directional roles[J]. Oncogene, 2017, 36(29): 4212-23 doi: 10.1038/onc.2017.62
    [37] Lai SC, Iwakiri Y. Is miR-21 a potent target for liver fibrosis[J]. Hepatology, 2018, 67(6): 2082-4 doi: 10.1002/hep.29774
  • 加载中
计量
  • 文章访问数:  2997
  • HTML全文浏览量:  1119
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-03
  • 刊出日期:  2019-01-01

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日