留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

铜绿假单胞菌重组Bb-OprH疫苗诱导的保护力及其细胞免疫应答

江帆 李文桂

江帆, 李文桂. 铜绿假单胞菌重组Bb-OprH疫苗诱导的保护力及其细胞免疫应答[J]. 分子影像学杂志, 2019, 42(1): 63-66. doi: 10.12122/j.issn.1674-4500.2019.01.15
引用本文: 江帆, 李文桂. 铜绿假单胞菌重组Bb-OprH疫苗诱导的保护力及其细胞免疫应答[J]. 分子影像学杂志, 2019, 42(1): 63-66. doi: 10.12122/j.issn.1674-4500.2019.01.15
Fan JIANG, Wengui LI. Protective effect and cellular immune response induced by recombinant Bb-OprH vaccine of Pseudomonas aeruginosa[J]. Journal of Molecular Imaging, 2019, 42(1): 63-66. doi: 10.12122/j.issn.1674-4500.2019.01.15
Citation: Fan JIANG, Wengui LI. Protective effect and cellular immune response induced by recombinant Bb-OprH vaccine of Pseudomonas aeruginosa[J]. Journal of Molecular Imaging, 2019, 42(1): 63-66. doi: 10.12122/j.issn.1674-4500.2019.01.15

铜绿假单胞菌重组Bb-OprH疫苗诱导的保护力及其细胞免疫应答

doi: 10.12122/j.issn.1674-4500.2019.01.15
基金项目: 重庆市科委地方病重大专项基金项目(2008AB5055;2008AB5008;2008AB5054)
详细信息
    作者简介:

    江帆:江 帆,硕士研究生,E-mail: jf-domingo@outlook.com

    通讯作者:

    李文桂,研究员,E-mail: cqliwengui@163.com

Protective effect and cellular immune response induced by recombinant Bb-OprH vaccine of Pseudomonas aeruginosa

  • 摘要: 目的 探讨铜绿假单胞菌(Pa)重组两歧双歧杆菌(rBb)-OprH疫苗免疫及Pa PAO1株攻击后,诱导的小鼠保护力、脾细胞增殖、亚群及凋亡变化情况。 方法 将疫苗口服灌胃免疫Balb/c鼠,在首免后4周用5×107 CFU的PAO1株滴鼻攻击。攻击后2周杀鼠取脾,计数小鼠肺细胞负荷,MTT检测小鼠脾细胞增殖,流式细胞术检测小鼠脾细胞亚群及脾细胞凋亡率。 结果 疫苗免疫及PAO1株攻击后,小鼠肺细菌负荷减少,脾细胞增殖、CD4+ T细胞明显增加,而脾细胞凋亡明显减少。 结论 铜绿假单胞菌重组Bb-OprH疫苗可诱导铜绿假单胞菌感染小鼠产生保护性细胞免疫应答。

     

  • 图  1  rBb-OprH疫苗免疫及PAO1株攻击后小鼠脾细胞增殖水平

    图  2  rBb-OprH疫苗免疫及PAO1株攻击后小鼠脾细胞亚群百分比

    *P<0.01 vs Blank vector control and Bb control.

    图  3  rBb-OprH疫苗免疫及PAO1株攻击后小鼠脾细胞凋亡率

    *P<0.01 vs Blank vector control and Bb control; #P<0.01 vs PaAg.

    表  1  疫苗免疫及PA01株攻击后小鼠肺组织细菌的菌落数(n=7,Mean±SD

    Group Pulmonary bacterial colonies (lgCFU/g)
    rBb-OprH group 7.691±0.069*
    Blank vector control 8.855±0.027
    Bb control 8.958±0.037
    *P<0.01vs Blank vector control and Bb control.
    下载: 导出CSV
  • [1] Athanasiou CI, Kopsini A. A systematic review on the use of time series data in the study of antimicrobial consumption and Pseudomonas aeruginosa resistance[J]. J Glob Antimicrob Resist, 2018, 15(2): 69-73
    [2] Nguyen L, Garcia J, Gruenberg K, et al. Multidrug-Resistant pseudomonas infections: hard to treat, but hope on the horizon[J]. Curr Infect Dis Rep, 2018, 20(8): 1-10
    [3] Bassetti M, Vena A, Croxatto A, et al. How to manage Pseudomonas aeruginosa infections[J]. Drugs Context, 2018, 35(7): 212527-35
    [4] da Silva AJ, Zangirolami TC, Marques Novo-Mansur MT, et al. Live bacterial vaccine vectors: An overview[J]. Braz J Microbiol, 2014, 45(4): 1117-29
    [5] Kucharska I, Liang BY, Ursini N, et al. Molecular interactions of lipopolysaccharide with an outer membrane protein from pseudomonas aeruginosa probed by solution NMR[J]. Biochemistry, 2016, 55(36): 5061-72
    [6] Chevalier S, Bouffartigues E, Bodilis JA, et al. Structure, function and regulation of Pseudomonas aeruginosa porins[J]. FEMS Microbiol Rev, 2017, 41(5): 698-722
    [7] 徐波, 曹郁生, 陈 燕, 等. 乳酸乳球菌食品级诱导表达系统的构建及异源蛋白的表达[J]. 微生物学报, 2007, 47(4): 604-9
    [8] Robinson CM, Kobe BN, Schmitt DM, et al. Genetic engineering of Francisella tularensis LVS for use as a novel live vaccine platform against Pseudomonas aeruginosa infections[J]. Bioengineered, 2015, 6(2): 82-8
    [9] Bridge DR, Whitmire JM, Makobongo MO. Heterologous pseudomonas aeruginosa o-antigen delivery using a salmonella enterica serovar typhimurium wecA mutant strain[J]. Int J Med Microbiol, 2016, 306(7): 529-40
    [10] Arboleya S, Watkins C, Stanton C, et al. Gut bifidobacteria populations in human health and aging[J]. Front Microbiol, 2016, 7(11): 1204-9
    [11] Kitagawa K, Omoto C, Oda T, et al. Oral combination vaccine, comprising bifidobacterium displaying hepatitis C virus nonstructural protein 3 and interferon-alpha, induces strong cellular immunity specific to nonstructural protein 3 in mice[J]. Viral Immunol, 2017, 30(3): 196-203
    [12] 刘 潇, 李文桂, 罗广旭. 铜绿假单胞菌重组Bb-pGEX-OprI疫苗的构建及其保护力的研究[J]. 四川大学学报:医学版, 2018, 37(1): 13-7
    [13] 朱佑明, 罗永艾, 李文桂. 铜绿假单胞菌重组Bb-OprF疫苗诱导小鼠细胞免疫应答的研究[J]. 免疫学杂志, 2012, 25(3): 217-21
    [14] 刘 潇, 李文桂. 两歧双歧杆菌介导的铜绿假单胞菌外膜蛋白Ⅰ(Bb-OprⅠ)疫苗免疫增强小鼠对铜绿假单胞菌的抑制作用[J]. 细胞与分子免疫学杂志, 2017, 28(8): 1040-4
    [15] Restagno D, Venet F, Paquet CA, et al. Mice survival and plasmatic cytokine secretion in a "two hit" model of sepsis depend on intratracheal pseudomonas aeruginosa bacterial load[J]. PLoS One, 2016, 11(8): e162109-16
    [16] Qadi M, Izquierdo-Rabassa S, Mateu Borras M, et al. Sensing Mg2+ contributes to the resistance of Pseudomonas aeruginosa to complement-mediated opsonophagocytosis[J]. Environ Microbiol, 2017, 19(10, SI): 4278-86
    [17] Dunkley ML, Clancy RL, Cripps AW. A role for CD4+ T cells from orally immunized rats in enhanced clearance of Pseudomonas aeruginosa from the lung[J]. Immunology, 1994, 83(3): 362-9
    [18] Kamei A, Wu WH, Traficante DC, et al. Collaboration between macrophages and Vaccine-Induced CD4(+) T cells confers protection against lethal pseudomonas aeruginosa pneumonia during neutropenia[J]. J Infect Dis, 2013, 207(1): 39-49
    [19] Zhang JL, Jiang R, Wang W, et al. Apoptosis are induced in J774 macrophages upon phagocytosis and killing of Pseudomonas aeruginosa[J]. Cell Immunol, 2013, 286(1/2): 11-5
    [20] Hotchkiss RS, Tinsley KW, Swanson PE, et al. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans[J]. J Immunol, 2001, 166(11): 6952-63
    [21] Hotchkiss RS, Dunne WM, Swanson PE, et al. Role of apoptosis in Pseudomonas aeruginosa pneumonia[J]. Science, 2001, 294(5548): U1-2
    [22] Schreiber T, Swanson PE, Chang KC, et al. Both gram-negative and gram-positive experimental pneumonia induce profound lymphocyte but not respiratory epithelial cell apoptosis[J]. Shock, 2006, 26(3): 271-6
    [23] Hotchkiss RS, Tinsley KW, Swanson PE, et al. Prevention of lymphocyte cell death in sepsis improves survival in mice[J]. Proc Natl Acad Sci, 1999, 96(25): 14541-6
    [24] Schwulst SJ, Grayson MH, Dipasco PJ, et al. Agonistic monoclonal antibody against CD40 receptor decreases lymphocyte apoptosis and improves survival in sepsis[J]. J Immunol, 2006, 177(1): 557-65
    [25] Liang DY, Hou YQ, Lou XL, et al. Decoy receptor 3 improves survival in experimental sepsis by suppressing the inflammatory response and lymphocyte apoptosis[J]. PLoS One, 2015, 10(6): e131680-7
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  555
  • HTML全文浏览量:  276
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-17
  • 刊出日期:  2019-01-01

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日